Coalition for Community & Healthcare Acquired Infection Reduction
Sign Up for our Newsletter Sign-In Become a Member
CHAIR Canada logo

Blog

Illuminating Discoveries: UV Light's Pivotal Role in Combatting COVID-19

In a groundbreaking study by the University of Southampton, researchers have unveiled the powerful impact of ultraviolet (UV) light in degrading infectious coronavirus particles, including the SARS-CoV-2 virus responsible for the COVID-19 pandemic. The study's findings highlight the effectiveness of UV light in breaking down critical components of the virus, rendering it unable to infect human cells. This research underscores the significant role UV light can play in disinfection, offering a versatile tool for safeguarding public spaces and sensitive equipment. As we delve deeper into understanding the mechanisms of viral deactivation, the data unequivocally demonstrates that UV light has not only proven to be effective but has made a tangible difference in the ongoing fight against airborne viruses.

 

Artist impression showing UVC light degrading SARS-CoV-2 viral particle. Courtesy of University of Southampton

 

Considering the groundbreaking impact of UV light on degrading coronavirus particles, how do you envision the integration of UV technology in your industry or specific environment? Share your insights with us in the comments below

 

Read the full study here: University of Southampton Study on UV Light and Coronavirus Deactivation

Tammy Friederich at 2:46 PM
RSS icon Facebook icon Twitter icon LinkedIn icon

Harnessing Copper's Antimicrobial Might: Reducing Community and Healthcare-Acquired Infections

Introduction: In today's fast-paced world, the battle against infections continues to be a pressing concern for communities and healthcare facilities alike. Amidst this ongoing struggle, one remarkable element from history has resurfaced as a potent weapon in our arsenal - copper. With a history spanning over 8 millennia, copper's role as a formidable antimicrobial agent in communal and healthcare settings remains unparalleled. From ancient civilizations like the Egyptians, Romans, Greeks, and Aztecs to modern applications, copper's ability to combat community and healthcare-acquired infections has stood the test of time.

 

Imagine a bustling metropolis like New York City, where thousands of hands touch public surfaces daily, creating a breeding ground for harmful germs. Now, picture a simple solution that can relentlessly neutralize these pathogens without the need for constant human intervention. Copper emerges as the hero in this real-life scenario, proving its efficacy on century-old fixtures in iconic locations like Grand Central Station. Its antimicrobial properties extend to hospital beds, doorknobs, light switches, and even elevator panels, creating a cleaner and safer environment for all.

 

In this blog post, we delve into the historical significance of copper's antimicrobial prowess and explore its modern-day applications in reducing community and healthcare-acquired infections. From the ancient wisdom of utilizing copper vessels for water sterilization to the EPA-approved copper-infused products revolutionizing infection control, the allure of copper as a safe and reliable measure to safeguard against infections intensifies. Join us as we journey through the realms of science and innovation, unraveling the true potential of copper in forging a cleaner, healthier, and safer world for everyone.

 

Copper's History: The evidence of copper's antimicrobial properties dates back to 5 or 6 B.C., with documented references in historical texts like Smith's Papyrus, an ancient Egyptian medical manuscript. Historians confirm that the Egyptians utilized copper as a potent water purification material, a medical antiseptic, and even for preserving food and water. Similar ingenuity was observed in other illustrious civilizations, such as the Romans, Greeks, and Aztecs, who recognized and harnessed copper's sterilization effects. In India, copper vessels were a common sight, employed to hold water for sterilization purposes, while ancient Chinese civilizations cleverly used copper coins to treat ailments. The Phoenicians, too, embraced copper for wound healing. This rich historical tapestry unequivocally establishes copper's remarkable versatility, playing a pivotal role in improving the quality of life through its antimicrobial properties. Moreover, the convenience of finding copper in a usable form through mining made it a favored material for countless generations.

 

Copper's Properties: Copper boasts powerful antimicrobial properties, swiftly neutralizing bacteria, fungi, and mold upon contact. This potency is attributed, in part, to an extra electron present in the orbit of copper molecules. This additional electron facilitates oxygen deprivation through oxygen-reduction reactions, effectively exterminating living pathogens like bacteria and fungi. Moreover, copper surfaces emit ions that target and breach the cell membranes or viral coatings of infection-causing organisms, incapacitating them in the process. Scientific studies have demonstrated that copper alloy surfaces can eradicate up to 99.9% of microorganisms in a mere 2 hours, emphasizing its rapid and robust action against germs.

 

Intriguingly, copper's significance extends beyond external applications. Our very own bodies harness copper to bolster the immune system's disease-fighting prowess. Even when tarnished, copper retains its ability to combat germs, making it a formidable and enduring antimicrobial agent. Unlike certain antibiotics that might contribute to drug-resistant superbugs, copper poses a more challenging adversary for pathogens, enhancing its efficacy in infection control.

 

Using Copper to Reduce Community and Healthcare-Acquired Infections: Copper's prowess in infection control has found practical applications in various community settings, with even century-old fixtures continuing to showcase its enduring effectiveness. For instance, the staircase handrails in New York City's iconic Grand Central Station demonstrate how copper reliably combats bacteria over time. Moreover, studies have revealed that hospital beds fitted with copper rails, footboards, and controls harbor a staggering 95% fewer bacteria compared to their plastic counterparts.

 

The versatility of copper extends to high-touch surfaces in both community and hospital settings, with toilet flush handles, light switches, and soap dispensers among those benefiting from copper alloys. Remarkably, if a material or surface contains 60% of greater copper, it retains its potent antimicrobial properties.

 

One of the most compelling attributes of copper is its autonomy as an infection control measure. Unlike methods requiring human intervention, such as frequent cleaning or handwashing, copper's natural ability to combat germs makes it a dependable and self-sustaining safeguard against infections. When combined with other materials, copper opens the door to multifunctional and innovative infection control products.

 

Health Canada's Pest Management Regulatory Agency (PMRA), which regulates public health claims for antimicrobial products, granted full registration for the sale and use of six different groups of antimicrobial copper alloys in July 2014. The Environmental Protection Agency (EPA) in the USA has granted approval for over 400 copper or copper-containing surfaces as "antimicrobial" since 2008, heralding a new era for infection reduction in community and healthcare settings. Copper emerges as a cost-effective solution to contain the spread of infections in hospitals and other environments.

 

Copper Products on the Market: A diverse array of copper and copper-containing products grace the market, offering potent infection control solutions for various settings and purposes. These innovations bring the antimicrobial might of copper into the heart of our environment, safeguarding against harmful germs and bacteria.

 

1. Copper Hospital Bed Components: Hospital beds fortified with copper components serve as formidable barriers against pathogens, reducing the risk of infections in healthcare settings.

2. Copper Light Switches and Faucets: High-touch surfaces like light switches and faucets can become breeding grounds for germs. Copper-infused alternatives offer continuous protection, inhibiting bacterial growth and transmission.

3. Copper IV Poles and Toilet Flush Handles: In healthcare facilities where constant disinfection is crucial, copper IV poles and toilet flush handles contribute to infection control by actively minimizing microbial presence.

4. Copper Doorknobs and Pulls: As gateways between spaces, doorknobs, and pulls pose potential infection hotspots. Copper-infused options provide an effective barrier against contamination.

5. Copper Elevator Panels: Elevator panels, frequently touched by numerous individuals, benefit from copper's antimicrobial properties, fostering a cleaner and safer environment.

6. Copper-Infused Textiles: Various textiles, from bedding to scrubs, can incorporate copper fibers, bolstering infection control efforts in healthcare settings and beyond.

7. Slab-Based Products for Countertops: In public spaces and medical facilities, copper-infused countertop slabs offer a resilient defense against bacterial proliferation.

 

While these products bring copper's antimicrobial advantages to the forefront, seeking those backed by scientific data and approvals for assured effectiveness is essential.

 

What Next? As the field of infection control continues to evolve, copper stands at the forefront as a compelling frontier. A thriving realm of research and development explores the diverse applications of copper in community and healthcare settings, with growing evidence pointing towards its effectiveness in reducing hospital-acquired infections. Manufacturers have embraced this momentum, creating an array of cost-effective copper-infused products that synergize seamlessly with infection control measures like hand hygiene and regular cleaning.

 

The allure of copper intensifies as a safe and reliable infection prevention measure, further elevating the well-being and health of individuals occupying these spaces. Notably, studies consistently underscore copper's ability to combat germs without promoting the development of drug-resistant superbugs or harmful microbes, solidifying its position as a formidable and sustainable solution.

 

As we delve deeper into this realm of possibilities, it becomes clear that copper's journey in infection control has only just begun. As research unravels novel applications and technology advances, we anticipate even greater strides toward a cleaner, safer, and healthier world.

 

Conclusion: Incorporating copper as an antimicrobial agent in infection control is a timeless practice that continues to hold immense value. From historical civilizations to modern applications, copper's potency in combating infections remains undisputed. Its efficacy in reducing bacteria and fungi on various surfaces makes it a reliable and autonomous infection control measure. With a growing array of copper-infused products gaining approval, the path toward a cleaner and healthier future becomes even clearer. By harnessing the power of copper, we pave the way for a safer world with diminished infection risks and improved well-being.

In closing, let us embrace the legacy of copper's antimicrobial might, incorporating it into our communities, hospitals, and daily lives. As we do so, we contribute to a resilient and robust defense against infections, upholding the health and safety of all those we serve.

 

References: 1. Copper Is The New Gold Standard For Saving Lives (forbes.com)

2. Antimicrobial applications of copper - ScienceDirect

3. How Copper Could Solve Problem of Hospital-Acquired Infections - The Hospitalist (the-hospitalist.org) 4. Metallic Copper as an Antimicrobial Surface - PMC  (www.nih.gov)

5. Copper’s Antimicrobial Properties Might Treat Bacterial Diseases | NIH Record

6. Copper’s Virus-Killing Powers Were Known Even to the Ancients | Science| Smithsonian Magazine 7. Copper Hospital Beds Kill Bacteria, Save Lives | ASM.org.

Steve Reinecke at 12:16 PM
RSS icon Facebook icon Twitter icon LinkedIn icon

October Member Spotlight

 

Each month CHAIR recognizies the hard work of our members and shines a spotlight on their projects, accomplishments, and contributions to the community. 

 

This month we would like to take a moment to recognize Azadeh Zereshkian from Circuit Edge.

 

 

Circuit Edge designs and manufactures infection control devices. Its flagship product, Intelligent Sink Trap, employs patented copper ion technology to consistently disinfect the P-trap, an area prone to the proliferation of antibiotic-resistant bacteria due to stagnant water. The copper ion technology used actively reduces bioburden with the goal of breaking the biofilm formation cycle and reducing the risk of wash sink backsplash resulting in infection breakouts in the patient rooms.

 

Azadeh Zereshkian is the Vice President Operations of Circuit Edge. Azadeh specializes in providing solutions in quality issues while supervising quality and compliance teams. She has an engineering degree with an eye for process improvements.

 

We wanted to sit down and get to know Azadeh a little bit more and here is what we learned.

  

Describe yourself in three words: Creative, Cheerful, and Caring.

 

If you could choose one superpower, what would it be? I would like to travel in time to see how our ancestors lived and how the next generations will live.

 

Who are three people (alive or dead) you would like to have dinner with? 

Many talented and inspiring people come to mind; however, I would like to have dinner with Elon Musk, Isaak Asimov and Thomas Edison. I'd like to learn more about how their brilliant minds function and what they have done to get to the success they have achieved.  

 

If you won the lottery, what would you do first? If I win a lottery, I would clear up my debts and support organizations that help progress humanity, sustainability and equity.

 

What are you most excited about right now? Public health and safety is the most exciting topic for me. In particular, in recent years with the increase of different diseases and pollutants, I'd like to help solve those challenges.


What is the best advice you have ever received? The best advice I have received is to talk less and listen more and make solid connections.

 

What is the worst advice you have ever received? The worst advice I have ever received was that there are only special people that can get into a certain field.


What is one question you wish people would ask you more? One question I wished people would ask me more is about the newest concept/book I have learnt/read recently.

 

What is one question you wish people would ask you less? One question I wished people asked less, is about the latest TikTok videos.

 

If you could switch lives with any one person for one day, who would you choose? I would like to switch lives with an astronaut so I can experience life in outer space.

 

Azadeh Zereshkian is a creative, cheerful, and caring individual with a deep passion for learning, a commitment to sustainability, and a desire to explore the mysteries of time and space.

 

To learn more about Circuit Edge, please contact Ehsan Foroughi, Head of Product
at 416-996-1747 or [email protected]

 

Member spotlight is a benefit to being a Member. If you would like to be highlighted contact us.

Tammy Friederich at 12:23 PM
RSS icon Facebook icon Twitter icon LinkedIn icon

Reducing Community- and Hospital-Acquired Infections: Transforming Toilet Technology for Safer Environments

Introduction:

 

Did you know that when a toilet is flushed, a plume of aerosolized matter spreads into the air above the toilet? This can impact air quality and potentially spread infectious agents onto other surfaces in the bathroom. This blog post will explore what can be done to reduce community- and hospital-acquired infections caused by this phenomenon.

 

          1. How Toilets Spread Infections:

 

1.1 Harboring Pathogens:

 

The introduction of public sanitation, including toilets, has been recognized as one of the most impactful advances in the control of spreading communicable infections and diseases. However, the toilets commonly used today in various settings, including private homes, community areas, and healthcare facilities, can harbor dangerous pathogens such as E. Coli, Staphylococcus aureus, and other bacteria and fungi. These pathogens can be spread through the air and on surfaces, contributing to hospital- and community-acquired infections. In multiple studies, scientists have found that a plethora of pathogens are dispersed into the air and onto surfaces when a toilet is flushed. These particles can settle on the toilet seat surface, flushing handle, and other areas of the room where the toilet is located. While proper hand hygiene has been shown to reduce disease transmission significantly, there is the potential for particle inhalation, which can lead to someone acquiring an infection.

 

1.2 The Impact of Lid-Down Flushing: Flushing toilets with the lid down can reduce airborne bacteria by 50%. Lid-down flushing is effective in two ways:

 

1. Firstly, it prevents the escape of aerosolized particles. When a toilet is flushed with the lid up, aerosolized matter containing bacteria is released into the air. Flushing with the lid down contains these particles within the toilet bowl, reducing their dispersal and airborne transmission.

 

2. Secondly, lid-down flushing minimizes the spread of bacteria present on the toilet surface. Flushing with the lid up can cause water and bacteria to splash onto surrounding surfaces, increasing the risk of contamination. The closed lid acts as a barrier, preventing the spread of bacteria from the toilet surface.

 

By implementing lid-down flushing protocols, we can significantly reduce airborne bacteria and minimize the spread of bacteria in the bathroom, contributing to improved infection control.

 

​          2. Toilet Technology Being Developed:

 

2.1 Waterless Toilets:

 

Waterless toilets, known as dry or composting toilets, have shown promise in reducing disease transmission. They operate without water for flushing, which can minimize the release and spread of pathogens. Studies suggest lower rates of gastrointestinal infections in households using waterless toilets compared to traditional flush toilets. Similarly, in healthcare facilities, waterless toilets have the potential to reduce hospital-acquired infections by mitigating contamination and minimizing the generation of plumes. Further research is needed to understand the benefits fully, but waterless toilets promise to improve infection control in various settings.

 

2.2 HVAC and Ventilation Modifications:

 

Enhancing infection control in lavatories can be achieved through specific modifications to HVAC and ventilation systems. Here are some practical examples and suggestions:

 

  1. Increased Airflow and Filtration: Modify the HVAC system to increase the airflow rate in the lavatory, ensuring adequate air exchange. Install high-efficiency air filters capable of capturing smaller particles, including microorganisms. This improves air quality and reduces the presence of airborne pathogens.
     
  2. Directed Ventilation: Adjust the placement and direction of HVAC vents to optimize the airflow within the lavatory. Ensure that vents are strategically positioned to minimize the spread of aerosolized particles and maintain positive air pressure to prevent contamination from adjacent areas.
     
  3. Separation of Ventilation Systems: Consider separate ventilation systems for toilets and other areas within the lavatory to prevent cross-contamination. This helps to prevent any airborne pathogens generated in the toilet area from spreading to other facility sections.
     
  4. UV-C Light Disinfection: Install UV-C light fixtures within the ventilation system to provide continuous disinfection of the airflow. UV-C light has germicidal properties and can help inactivate microorganisms, further reducing the risk of infection transmission through the ventilation system.
     
  5. Automatic Sensors and Controls: Implement automatic sensors and controls for ventilation systems, enabling increased airflow during high usage or occupancy periods. This helps maintain optimal air quality and reduces the accumulation of airborne pathogens.
     
  6. Regular Maintenance and Cleaning: Establish a regular maintenance schedule for HVAC and ventilation systems in lavatories. Ensure proper cleaning, disinfection, and filter replacement to prevent the buildup and spread of contaminants.
     

By implementing these modifications, lavatories can benefit from improved air circulation, enhanced filtration, and reduced contamination risks, thereby contributing to better infection control measures.
 

2.3 Surface Engineered Disinfection: 
 

1. Automated UV Surface Decontamination in Unoccupied Toilets: 
 

  • UV-C light, a specific wavelength of ultraviolet light, has proven germicidal properties and can effectively deactivate microorganisms, including bacteria and viruses. Automated UV surface decontamination systems are designed to operate in unoccupied toilets during specified time intervals. These systems use strategically positioned UV-C light fixtures to target high-touch surfaces such as toilet seats, flush handles, and door handles. When activated, the UV-C light irradiates these surfaces, effectively killing a wide range of pathogens that may be present.
     
  • The advantage of this technology lies in its ability to provide continuous decontamination without the need for manual intervention. Automating the process ensures consistent and thorough disinfection of toilet surfaces, even in between cleaning schedules. This reduces the potential for surface contamination and the risk of transmission to subsequent users. However, it is important to note that automated UV surface decontamination systems should only be used when toilets are unoccupied to prevent exposure to UV-C light, which can be harmful to human health.
     
  • This technology offers an additional layer of protection in the fight against infection transmission in toilets. By incorporating automated UV surface decontamination systems in unoccupied toilets, we can enhance the overall hygiene and infection control measures in these spaces. It complements other prevention strategies and contributes to creating safer environments for users.
     

2. Copper Surfaces: 
 

  • Incorporating metal alloys with antimicrobial properties, such as copper, in manufacturing toilet handles and seats can further enhance infection control. These surfaces release copper ions when in contact with moisture or touched by hands, which have a destructive effect on bacteria, viruses, and fungi. The continuous release of copper ions reduces the microbial load on these high-touch surfaces, limiting the survival and spread of pathogens.
     

2.4 Combining Infection Prevention Approaches:

 

Combining multiple approaches for a comprehensive infection prevention strategy is important to effectively reduce the spread of infections. By implementing a range of measures, we can significantly enhance our ability to control the transmission of pathogens. Let's explore some key considerations when combining these approaches:
 

  • Synergistic Effects: Each infection prevention approach contributes in its own way to reducing the spread of infections. For example, lid-down flushing helps minimize the release of aerosolized particles during toilet flushing, while waterless toilets eliminate the need for water and decrease the generation of plumes altogether. Additionally, HVAC and ventilation modifications improve air circulation and filtration, further reducing the presence of airborne pathogens. By combining these approaches, we create a synergistic effect that maximizes the effectiveness of infection control.
     
  • Practical Examples: Real-life examples demonstrate the positive impact of combining infection prevention approaches. In a healthcare setting, for instance, a comprehensive strategy may involve implementing lid-down flushing protocols, installing waterless toilets in high-risk areas, optimizing HVAC systems for better air quality, and ensuring rigorous cleaning and disinfection practices. Such combined measures have been shown to reduce infection rates significantly.
     
  • Overcoming Challenges: Implementing a comprehensive infection prevention strategy may come with challenges. These can include costs, infrastructure requirements, and user behavior. However, various strategies can help overcome these obstacles. For instance, organizations can prioritize investments in key areas based on risk assessment, gradually introduce waterless toilets in phases, educate and train users on proper toilet hygiene practices, and establish clear protocols and guidelines to ensure adherence.
     

By combining these approaches and addressing potential challenges, we can establish robust infection prevention measures that effectively reduce the spread of infections and promote a safer environment for communities and healthcare facilities.
 

Conclusion:
 

Toilets have been recognized as both contributors to and potential targets for infection control. The spread of community- and hospital-acquired infections through toilets is a significant concern. This blog post explored various approaches to reduce infection transmission and improve infection control in toilets.

 

By adopting best practices in toilet design, maintenance, and user behavior, we can make significant strides in preventing the spread of infections. Lid-down flushing reduces the release of aerosolized particles and limits the spread of bacteria on toilet surfaces. Waterless toilets eliminate the need for water and minimize the generation of plumes altogether. HVAC and ventilation modifications enhance air circulation and filtration, reducing the presence of airborne pathogens.

 

Combining these infection prevention approaches creates a synergistic effect that maximizes the effectiveness of infection control. Whether in households, community settings, or healthcare facilities, these measures can significantly reduce the risk of infection transmission and contribute to safer environments.

 

As we move forward, it is essential to prioritize the implementation of these infection prevention measures. Investing in toilet technology, promoting best practices, and educating users on proper hygiene practices are crucial steps toward creating healthier communities and reducing the burden of hospital-acquired infections.

 

Remember, infection prevention is a collective responsibility. Each of us has a role to play in maintaining clean and hygienic toilet environments. Together, we can make a difference in reducing the spread of infections and creating safer spaces for all.

 

Take action today by implementing these best practices and spreading awareness about the importance of infection control in toilets. Let us strive for a future where safe and hygienic toilets become the norm, protecting our communities and promoting overall well-being.

 

Thank you for reading and joining us in this important mission!

 

References:
 

Toilet hygiene—review and research needs - PMC (nih.gov)

The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet - PubMed (nih.gov)

Can a toilet promote virus transmission? From a fluid dynamics perspective - PMC (nih.gov)

Does putting the lid down when flushing the toilet really make a difference? | Microbiology Society

Steve Reinecke at 8:58 AM
RSS icon Facebook icon Twitter icon LinkedIn icon

Call to Action: A Team-Based Approach to Reducing Healthcare-Acquired Infections (HAIs)

Here is a great article written by our Co-Founder, Richard Dixon.

 

Discover the power of a team-based approach in reducing healthcare-acquired infections (HAIs). In the article "Call to Action: A Team-Based HAI Response," written by Richard Dixon, co-founder of CHAIR Coalition, the importance of collaboration among healthcare departments is emphasized. By establishing a patient care multi-disciplinary team (PC-MDT) consisting of infection prevention, environmental services, laboratory, and other stakeholders, we can tackle HAIs effectively. Imagine improved patient outcomes, reduced healthcare costs, and a safer environment for all. Explore the full article to learn more about the transformative impact of teamwork in HAI reduction.

 

Download the full article here: Call to Action A Team-Based HAI Response.pdf

Tammy Friederich at 5:04 PM
RSS icon Facebook icon Twitter icon LinkedIn icon